Euler's Polyhedral Formula

1.	Who is Euler? What is his contribution to the study of solid figures?
2.	What is a polygon? What is a polyhedron? Define these two solid figures in terms of their bases and faces. In geometry, what is a platonic solid?
3.	What is Euler's Polyhedral Formula? Use 5 platonic solids to illustrate this formula. Show the relationship between the edges, faces and vertices of polyhedral. (Include hand-drawn diagrams in your tabulation of findings)
4.	What is the Euler Characteristic for any convex polyhedron's surface? How many hexagons are found on a soccer ball?
	Fill in the blanks: Every pentagon has vertices and every such shape is shared by faces. Every hexagon has vertices and every such shape is shared by faces.
5.	Using the information in part (ii) and using N for the number of hexagons and L for the number of pentagons, use Euler's Polyhedral Formula and Euler Characteristic of a sphere to derive the number of pentagons on a soccer ball. What is V (vertices)? What is E (edges)? What is F (faces)?
6.	Using suitable materials create a 3-dimensional model of a soccer ball.

Answers:

2. Polygon : A closed shape that is made up of points joined by straight lines in 2-dimension.

Polyhedron: A closed solid object whose surface is made up of a number of polygonal faces.

A platonic solid has faces that are congruent regular polygons with the same number of faces meeting at each vertex. Its edges, vertices and angles are also congruent.

3. Euler's Polyhedral Formula states that Euler's formula tells us that the number of vertices minus the number of edges plus the number of faces is equal to two, i.e. V - E + F = 2

Name	Image	Vertices V	_		Euler characteristic: $V - E + F$
<u>Tetrahedron</u>		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
<u>Dodecahedron</u>		20	30	12	2
<u>Icosahedron</u>		12	30	20	2

4. The Euler Characteristic for any convex polyhedron is 2.

20 hexagons on a soccer ball.

Every pentagon has __5__ vertices and every such shape is shared by __3__ faces. Every hexagon has __6__ vertices and every such shape is shared by __2__ faces.

Euler Characteristic =
$$2 = V - E + F$$
 (0.5 mark)
= $\frac{5L + 6N}{3} - \frac{5L + 6N}{2} + (L + N)$ (0.5 mark)
= $\frac{L}{6}$
To satisfy the equation, $L = 12$. (0.5 mark)